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Abstract-·ln this paper, some basic concepts on effective properties of nonhomogeneous elastic
solids are reviewed. The various theories are evaluated by conducting experiments on artificially
cracked and porous solids, and by comparing the results with the theoretical predictions for the
cases of interacting and non-interacting inhomogeneities. Two aluminum plates containing slots
and two containing circular holes in random mutual positions with different orientational dis
tributions were tested. In the case of plates containing random slots it is shown that the approxi
mation of non-interacting cracks provides a reasonable estimate of the modulus, even when inter
actions may be significant. The results obtained from the plates containing circular holes indicate
that, as porosity increases, the effective Young's modulus follows the predictions for the case of
interacting holes from both Mori-Tanaka and differential schemes. Copyright (c:) 1996 Elsevier
Science Ltd.
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semi-major axis of ellipse
reference area
crack density tensor
semi-minor axis of ellipse
holes' density tensor
Kronecker delta
additional strain tensor due to the presence of a hole
additional volumetric strain due to the presence of a hole
change in elastic potential due to holes
eigenvectors of p
effective Young's modulus
Young's modulus of matrix material
average strain tensor
elastic potential of material containing holes
elastic potential of matrix material
hole boundary
hole's compliance tensor
half crack length
unit normal to minor axis of ellipse
compliance tensor of matrix material
effective compliance tensor
unit normal to major axis of ellipse
effective Poisson's ratio
Poisson's ratio of matrix material
porosity
isotropic stress
eccentricity parameter
crack density parameter
eigenvalues of p
average stress tensor
displacement of hole boundary

I. INTRODUCTION

The problem of determining effective elastic properties of inhomogeneous materials has
applications in different fields such as materials science, structural mechanics and geo
physics. The presence of inhomogeneities generally causes a reduction in the elastic moduli
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of a solid material. Therefore, a determination of effective properties, which take into
account the effect of microcracked or porous structures, becomes important.

The objective of this work is to present some basic concepts on effective properties of
elastic solids with cavities and cracks by reviewing the pioneering work of Kachanov
(1993), as well as to evaluate the various approximate schemes by conducting well-designed
experiments on artificially cracked and porous solids. The first part discusses some of the
theories proposed for determining effective elastic properties of solids containing elliptical
holes. The solutions are presented for cases of both interacting and non-interacting holes.

The second part of the paper presents the results of experiments designed to measure
effective elastic properties of artificially cracked and porous aluminum plates under plane
stress conditions. The plates contained slots or circular holes located in random mutual
positions, for different orientational distributions. For each case, the effective Young's
modulus was determined as a function of crack density (in the case of slots) or porosity (in
the case of holes). The results obtained were compared with the predictions from the
theories discussed for the cases of interacting and non-interacting inhomogeneities.

2. EFFECTIVE PROPERTIES OF SOLIDS WITH ELLIPTICAL HOLES

The analysis presented here follows that of Kachanov (1993) and has the advantage
of being a general treatment, since it can describe the behavior of a material with an
arbitrary distribution of holes of various aspect ratios. Cracks and circular holes are covered
as limiting special cases. The key point is the identification of the proper parameters to
describe the density of holes in the material. These parameters emerge naturally from the
structure of the elastic potential: one scalar, the porosity p, and a second rank tensor {3,
which is called the holes' density tensor. The porosity vanishes in the case of cracks while
the holes' density tensor reduces to the crack density tensor (ex). In the case of circular
holes, the tensor {3 is proportional to the unit tensor, and porosity then becomes the only
density parameter. For any other aspect ratio of holes, the two parameters combined are
needed for the complete description of the problem. Even when the orientational distri
bution of holes is random and the effective properties are isotropic, the effective moduli
cannot be described only by porosity, since an evaluation of "eccentricity" is also needed.
The problem is analyzed in the framework of linear elasticity. Non-linear effects due to
holes closing are not considered; in the case of compressive stresses, this imposes some
limitation on the magnitude of stresses (Zimmerman, 1991).

2.1. Elliptical hole in a uniform stressjield
Consider the case where an ellipse of major axis 2a and minor axis 2b within a reference

area A is subjected to a uniform stress (TIl = (T22 == P. The additional volumetric strain f18,

due to the presence of the hole can be calculated from a known solution of elasticity
(Muskhelishvili, 1963), which yields

1- 2vo P I 0 ) I ~ 2voPI)
f181' = --~ ~2n(a~+b-) =--~ -2n[2ab+(a-b)-],

I-vo Eo A I-Va Eo A
(I)

where Eo and Vo are the Young's modulus and Poisson's ratio of the matrix under plane
stress conditions. This expression shows that, among elliptical holes with the same area
(nab), the more elongated ones have the higher compressibility.

Figure 1 illustrates the compressibility of an elliptical hole as a function of the aspect
ratio b/a for a fixed value of a. Near the limiting case of a crack (b/a = 0) the slope of the
curve is approximately horizontal, which shows that a small "inflation" of a crack does not
considerably affect the compressibility; at b/a = 0.1, the difference is only 1%. Near the
limiting case of a circular hole a similar observation can be made, since the slope of the
curve nearly coincides with the slope for a circular hole with the same area. For b/a = 0.8,
the difference between the two solutions is less than 2.5%, showing that elliptical holes of
high aspect ratios can be approximated by circular holes with good accuracy.
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Fib' 1. Compressibility of an elliptical hole as a function of the aspect ratio (Kachanov, 1993).

2.2. Non-interacting elliptical holes
Now consider the case of a solid containing many elliptical holes and subjected to an

externally applied stress (J. In the approximation of non-interacting holes, each hole is
analyzed as an isolated one, subjected to the applied stress (J. The additional strain due to
the presence of the holes is then a sum of the additional strains due to each individual hole,
such that the effective compliance tensor can be written as

M elT - M O +"H(k)
//kl - Uk! ~ ijk!,

k

(2)

where M~kl is the compliance tensor of the matrix material and H~7d, is the hole compliance
tensor for the k-th hole (Kachanov, 1993).

The elastic potential can be represented by the sum of two terms:

(3)

wherefo represents the elastic potential of the intact material subjected to the loading (J and
11/ represents the change in the elastic potential due to the presence of a hole. An explicit
expression for 11/ in terms of (Jif can be obtained by substituting Hifk' (Kachanov, 1993).
The expression for 11/ is then written as

(4)

where it is expressed in terms of two dimensionless parameters related to the density of
holes, one scalar (p) and one tensorial (/3ik)' These parameters are defined as

/3 - ~ '( 2 b2 )(k)Ik - n~ a n,nk+ m,mk .
A k

(5)

The scalar parameter p is the porosity of the material, which is the area of the elliptical
holes divided by the total area. It does not depend on the orientational distribution of
holes, and vanishes in the case of cracks. The tensor /3 is called the holes' density tensor
and includes information on the orientational distribution of holes and their eccentricity.
In the case of cracks of length 2a(kl, /3,dn reduces to the two-dimensional crack density
tensor rt lk =O/A)L(a2n,nk)(kl, introduced by Vakulenko and Kachanov (1971) and
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Kachanov (1980). The elastic potential of a solid with non-interacting cracks becomes
!1f = (nlEo)(Jij.(Jjk'Yik'

Due to symmetry of the holes' density tensor, it can be written in two dimensions as

(6)

where PI, Pl, el and el are the principal values and unit eigenvectors of 13, respectively. This
implies orthotropy of the effective properties, the axes of orthotropy coinciding with the
principal axes of 13.

The eccentricity of the holes is characterized by the difference f3ik - pbib which can be
called the eccentricity tensor. Its linear invariant, tr(f3ik - pbik ), is given by

(7)

where q is called the eccentricity parameter. It vanishes in the case of circular holes (a = b).
In the case of cracks, qln reduces to the conventional scalar crack density parameter
P = (I IA)I:kdkll

, which is the linear invariant of the crack density tensor 'Y.

The effective moduli can be obtained from the elastic potential of the material with
holes, by taking the derivative Cij = ojio(Jij' In the case of circular holes, the material is
isotropic since f3ik = pbik . The effective moduli are

(8)

When cracks are randomly oriented, isotropic effective properties can be expected, which
means that 13 is proportional to a unit tensor. Since trf3 = 2p+q, we have f3ik = (p+qI2)b ib
and for cracks, p = 0 and q = np, where P is the scalar crack density parameter. The moduli
obtained are

Eo
E=--'

1+np'

Vo
V=--.

I+np
(9)

2.3. Interacting elliptical holes
The determination of effective elastic properties of materials containing holes becomes

significantly more complex when interactions between holes cannot be neglected. Several
approximate schemes have been proposed, which can be divided in two main groups: the
methods of effective matrix and the methods of effective field.

The methods of effective matrix place each hole in a medium with effective elastic
properties. The effect of each individual hole on the moduli is obtained by considering it as
an isolated one in the matrix with reduced stiffness. As a consequence, these methods predict
that the impact of interactions always results in softening of the material as compared to
the non-interacting approximation. Two most frequently used schemes of this type, the
self-consistent scheme and the differential scheme, are discussed in the text to follow.

The method of effective field, which was first applied to composite materials, consists
of placing a representative hole into the undamaged matrix and subjecting it to an effective
stress field. It allows one to consider very general problems, because the effective stress field
can be inhomogeneous, thus incorporating some information on mutual positions of holes.
In this sense, hole interactions are not predicted to always produce a softening impact,
which makes this method somewhat more powerful than the effective matrix methods. The
method of Mori-Tanaka (1973), also used in the mechanics of composite materials, was
applied to cracked materials by Benveniste (1986). It is in fact a simplified version of the
method of effective field, in which the effective field is taken to be homogeneous and equal
to its volume average, which considerably simplifies the calculations.
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Self-consistent scheme. This scheme, formulated by Hill (1965) for the general case of
composite materials, was applied by Budiansky and O'Connell (1976) to materials with
randomly oriented cracks, and was extended by Hoenig (1979) to parallel cracks. In this
method, the effect of interactions between holes is included by placing each hole separately
in a medium with the effective elastic properties of the body of reduced stiffness. For a two
dimensional isotropic material containing circular holes in random positions, the effective
moduli obtained are

(10)

In the case of randomly located cracks, the moduli can be expressed in terms of the scalar
crack density parameter as

E = Eo(1-np); v = vo(1-np). (11 )

These formulae predict a much softer response than other approximate schemes. This effect
is not observed in its modified version, called the generalized self-consistent scheme (lun
and Jasiuk, 1993).

Differential scheme. In this scheme, as in the self-consistent, the analysis is reduced to
one isolated hole in the effective matrix. The difference between the two schemes, however,
is that this type of analysis is done incrementally. The density parameters are increased in
small steps, and the effective elastic moduli are recalculated at each step (Zimmerman,
1984; Kachanov, 1993). Another derivation of the differential scheme has been provided
by Norris (1985), and it accounts for the possibility of hole overlap. This adjustment has
not been considered in obtaining the subsequent expressions.

In the case of a two dimensional isotropic material containing randomly located
circular holes, the results are

In the case of randomly located cracks the equations reduce to

E = Eo e- np
; v = voe- nP

.

(12)

(13)

As is characteristic of all methods of effective matrix, these schemes always predict a
softening effect due to interactions, and information on mutual positions of cracks is very
difficult to incorporate. However, the softening effect predicted by the differential scheme
is generally weaker than the effect predicted by the self-consistent scheme.

Method ofefJectivefield (method o{Mori-Tanaka). As already mentioned, the method
of effective field places a representative hole into an effective stress field, which generally
does not coincide with the remotely applied field; the difference between these fields
accounts for the effect of interactions.

In the case of randomly located elliptical holes, we can consider each hole as an isolated
one subjected to an effective stress field that equals the average stress in the solid phase.
The problem of a solid containing N holes is then solved as a superposition of N problems,
each one containing one hole, where the effect of interactions between holes reflects the
change of the average stress in the solid phase.

The effective moduli obtained for the case of randomly located elliptical holes are
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Eo
E=--------

1+(3p+Q)(I-p)-"

Vo+p
v=------"-------

1+(3p+Q)(1-p)-1
(14)

It can be noticed that the factor (I - p) - 1, that accounts for the interactions effect on the
effective moduli, causes softening of the material as compared to the non-interacting
approximation. In the case of randomly located cracks, the results from the non-interacting
approximation are recovered.

3. EXPERIMENTS

3.1. Description
Despite the number of different theoretical approaches proposed for determining

effective elastic properties of solids, not much experimental work in this area could be
found in the literature. Litewka (1985, 1986) performed tests with aluminum specimens
containing sets of rectangular openings arranged in square patterns. Oda et al. (1984) used
gypsum plaster samples with random cracks for unconfined compression and ultrasonic
velocity tests and compared them with theoretical results formulated in terms of a fabric
tensor (similar to the crack density tensor i'I. introduced earlier by Kachanov, 1980). Vavakin
and Salganik (1975) conducted uniaxial tension tests with rubber sheets containing ran
domly located rectilinear cracks and circular holes. However, as pointed out by Kanaun
(1980), their arrangements of holes and cracks were not actually random, which may have
affected the results.

The main purpose of this work is to determine the Young's modulus of an isotropic
elastic material containing inhomogeneities-cracks or circular holes-located in random
positions. This was accomplished by subjecting an artificially cracked, inhomogeneous
elastic material to a uniaxial tensile stress under plane stress conditions. The specimens
used were four identical rectangular aluminum (alloy 2024) plates with a length to width
ratio of 3 : I. The plates were 1.6 mm (0.063 in) thick, with a plane area of 685.8 mm x
228.6 mm (27.00 in x 9.00 in).

During the tests, the plates were pulled in tension along their length through two small
holes approximately 6 mm in diameter located at a distance of 12 mm from the top and
bottom edges. The holes were located with an accuracy of 0.03 mm to eliminate eccentric
loading. The tensile load was applied through two steel pins of approximately the same
diameter that were placed through these holes.

In order to obtain a one-dimensional homogeneous state of stress in the absence of
inhomogeneities, only the central third part of the plates, corresponding to an area of
approximately 228.6 mm x 228.6 mm, was monitored during the tests. It was shown that
the distribution of stresses along that region was approximately homogeneous by measuring
the strain along the section. The difference between the strains measured at the center of
the section and close to the edges was less than 5%.

Two LVDTs, one at each side of the plate, were used to measure the vertical dis
placements corresponding to the central part of the plates. The value of strain used for
calculation of the effective Young's modulus was obtained from averaging the responses of
the two LVOTs and dividing by an appropriate gage length. Figure 2 shows the geometry
of the plates without the inhomogeneities. The dashed lines delimit its central third part
where the displacements were measured. The devices used to hold the LVDTs were made
of steel and were designed to avoid movements at the plate connection during the tests.

Two different types of inhomogeneities were considered: slots (simulating cracks) and
circular holes. These features were cut through the thickness of the plates to characterize
the plane stress condition. Two of the plates contained slots and the other two contained
circular holes. Slots were used instead of cracks due to the difficulty in creating real cracks
in the plates. The minimum width of the slots that could be easily machined was 1.2 mm,
for the plate thickness of 1.6 mm, and the lengths were calculated such that a minimum
aspect ratio of I : 10 was obtained, in order to have crack-like features. For this aspect
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ratio, the difference in the compressibility of the slots as compared to the case of cracks is
only 1%, as shown in Fig. 1.

A random number generator was used to create the positions of the centers of the slots
and holes over the central third of the plates. The x and y coordinates of each center were
progressively generated such that, if a slot or hole would intersect another one already
existing, it would be discarded and a new one would be generated. This procedure was used
until the desired number of features were obtained without intersecting each other. In the
case of slots, the orientations were not random, but prescribed to uniformly vary from 0 to
180 degrees. The purpose of this was to assure that an approximate isotropic distribution
would be obtained, since the dimensions of the plates presented a limitation on the number
of slots that could be used. To ensure a representative behavior of the nonhomogeneous
element (the region over which displacements were measured) slots or holes were also
located outside the central part by reflection of the positions already existing. Figures 3 and
4 show the positions of the slots and holes in the plates.

Several tests were performed to determine the variation of the Young's modulus with
crack density (for plates containing slots), and with porosity (for plates containing holes).
The two plates containing slots were tested for the same values of crack density, but
with different crack distributions. To investigate the minimum number of slots needed to
characterize a random array, one of the plates had six slots, while the other one had 20
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slots. For each value of crack density all the slots in each plate had the same length. The
plates were tested for values of crack density between 0.02 and 0.15. The same procedure
was followed for the plates containing holes; one of the plates had six holes and the other
had 20. Each plate was tested for values of porosity between 0.02 and 0.13. Each test was
repeated three times, and the data obtained were then compared to the theories presented
in the previous sections.

3.2. Calibration tests
Calibration tests were performed before any slots or holes were cut into the plates and

had two main purposes: determination of the Young's modulus of the intact material and
determination of a gage length for the effective properties experiments. This last test
corresponds to finding the exact distance over which displacements are being measured by
the LVDTS. This can be justified by the fact that the need for two different fixing points
around the top and bottom dashed lines in Fig. 2 might cause that length to differ from its
first estimation (one third of the total length of the plate).

These tests were performed using one of the plates designed for the actual tests, but
without any inhomogeneities. Tensile loads up to 4.5 kN were applied to the plate and the
corresponding strains were obtained from two strain gages located on opposite sides of the
plate at the centre of its plane area. The plate was tested five times, and the maximum
difference between the values obtained for Young's modulus was less than 0.5%. The
Young's modulus of the intact material was taken as 71.8 GPa, which is the average of
those values. This value also is in very good agreement with the Young's modulus obtained
from uniaxial compression tests for this same type of material (72.0 GPa).

The gage lengths were obtained from those same tests by dividing the average of the
LVDTs' readings by the average of the strain gages readings (to eliminate the effect of
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bending). Comparison of the values obtained from different tests showed a maximum
difference of 0.5%. The gage length was taken as the average between them (246.6 mm),
which is actually greater than the originally estimated value of one third of the total
length (228.6 mm). Geometrically, the value obtained for the gage length corresponds
approximately to the outside distance between the outer screws that fix the LVDTs' holding
devices (243 mm). The small difference between these values, on the order of 2%, can be
attributed to the presence of friction in the contact between the LVDTs' holding devices
and the plate itself.

The sensitivity of the load cell used was 1.25 kNjV, and the sensitivity of the LVDTs
was approximately 0.1 mm/V. Because of the extremely small displacements that were
expected during the tests (on the order of 0.01 mm) the sensitivity of the LVDTs turned
out to be an important factor in the evaluation of the results. The behavior of the LVDTs
displayed a variability not greater than 0.1 %.

3.3. Results
The calibration tests provided values for the gage length of the displacement measure

ments and the Young's modulus of the intact material. Note that the gage length was
needed in the calculations of the crack density (for the plates containing slots) and the
porosity (for the plates containing holes).

In the tests performed, the readings obtained from the two LVDTs were averaged, and
these values were divided by the gage length to obtain the average strain of the element.
The stresses were obtained by dividing the applied loads by the cross-sectional area of the
plates (365.8 mm2

). Dividing the axial stresses by the average axial strains yields the effective



4128 F. C. S. Carvalho and J. F. Labuz

Young's modulus of the inhomogeneous material. The results for both cases of plates
containing slots and holes are presented in terms of a ratio between the effective Young's
modulus (E) and the Young's modulus of the intact material (Eo) as a function of the
appropriate density parameter (crack density or porosity).

An error analysis was made based on the results obtained from the calibration tests
for the Young's modulus of the material and the gage length. For this analysis, it was
assumed that there was some variability associated with the readings from the strain gages,
as well as with the readings from the LVDTs. No error associated with the applied loads
was included. As a result. the error associated with the determination of the ratio between
the effective Young's modulus and the Young's modulus of the intact material was not
greater than 0.8%. Because this number is very small, no error bars could be shown.

Each plate was tested for tensile loads up to 4.5 kN. At loads of 5 kN or more, some
permanent deformation around the holes through which the loads were applied could be
observed. All plates showed elastic behavior during the tests for the loads applied.

Figure 5 shows the results of the tests performed with the plates containing slots. In
order to judge the influence of the slots located outside the central area of the plates, the
first test was performed without them. The slots outside were then cut and the test was
repeated. As observed, the difference in the results was considerable. The following tests
were performed with the outside slots, thus ensuring that the behavior of a representative
element was being measured.

As expected, the effective Young's modulus of both plates decreases as the crack
density increases. It can be observed, however, that for the same values of crack density
the plate containing six slots has always a higher effective Young's modulus than the plate
containing 20 slots. The six-slots configuration was checked with a numerical calculation
(Shah et at., 1994) and the results showed predominance of stress shielding for that par
ticular array at lower densities. This explains the experimental results, and suggests that 6
slots may not be a sufficient number to characterize a random distribution.

The topmost line in the graph represents the analytical results obtained from the
approximation of non-interacting cracks, eqn (9), which coincides with the predictions of
Mori-Tanaka's scheme. The experimental results are in very good agreement with the non
interacting theory even at higher values ofcrack density, where interactions probably occur.
The differential scheme predictions are also close to the experimental results for lower
values of crack density. However, at high densities, the non-interacting approximation
provides better predictions. The experimental results are not in good agreement with
the predictions of the self-consistent scheme, which tends to overestimate the effective
compliance.
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Fig. 5. Effective Young's modulus of plates containing slots.
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The results for the plates containing circular holes are shown in Fig. 6. The first two
tests (for values of porosity of 0.02 and 0.05) were performed without any holes outside
the central area of the plates. The holes were then added and the second test was repeated
(porosity of 0.05). Again, a considerable difference in the results can be observed, and
subsequent tests were performed with holes outside the central region to ensure that a
representative behavior was measured.

The lines in the graph show the analytical results presented in the previous section for
the cases of interacting and non-interacting circular holes. It can be observed that, as
porosity increases, and interactions become more likely, the results for both plates follow
the interacting approximation. The results also suggest that at p = 10%, interactions already
occur in the plate containing 6 holes, but not in the one with 20 holes. At all other values
of porosity, the results for both plates are very close and in very good agreement with the
theoretical predictions. This can be explained by the fact that, for the case of circular holes,
the only parameter that accounts for the presence of holes in both interacting and non
interacting cases is porosity, which is insensitive to the type of distribution (random or
not). Therefore, the number of holes in each plate, for each approximation, should not
influence the results if both plates have the same value of porosity.

As in the case of cracks, the self-consistent scheme seems to overestimate the effective
compliance of the plates. The experimental results obtained were not able to distinguish
between the predictions of Mori-Tanaka's and the differential scheme, for values of porosity
up to 13%. This same behavior has been observed by Zimmerman (1991) when analyzing
experimental data on 3-D materials containing spherical pores.

4. CONCLUDING REMARKS

The effective Young's modulus of plates containing slots or circular holes located in
random positions was measured. The ratio between the effective Young's modulus of the
plates and of the intact material was shown as a function of the proper density parameter
for each case: crack density, for slots, or porosity, for circular holes. The results obtained
were compared with some of the existing analytical expressions.

In the case of plates containing slots, the approximation of non-interacting cracks is a
reasonable one, even at relatively high values of crack density, where interactions are
expected to occur. For the plates containing circular holes, it was observed that the effective
Young's modulus approaches the predictions of an interacting approximation as porosity
increases. In both cases considered (slots and circular holes), the predictions of the self
consistent scheme did not show good agreement with the experimental results, over
estimating the effective compliance. In the case of circular holes, for the values of porosity
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Fig. 6. Effective Young's modulus of plates containing circular holes.
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used, the results were not able to distinguish between the predictions of the Mori-Tanaka
scheme and the differential scheme.

The results obtained should be considered only within the context of the experiments
(the number of samples examined and the densities of defects tested). However, the good
agreement obtained between the theoretical analysis and the experimental results suggests
that the tests are appropriate for measuring effective Young's modulus of elastic materials
containing randomly located inhomogeneities under plane stress conditions. In the case of
plates containing slots, the results also suggest that a minimum number is needed, certainly
greater than six and probably at least 20, to guarantee randomness of locations.
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